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Syntax

Terms: variables, functions. The same de Bruijn indices as in SeCaV

datatype tm
= Var nat (<#>)
| Fun nat <tm list> (<f>)

Formulas: falsity, predicates, implication, universal quantification

datatype fm
= Falsity (<L>)
| Pre nat <tm list> (<%>)
| Imp fm fm (infixr <—> 55)
| Uni fm (<V>)

type_synonym sequent = <fm list x fm list>



Sequent Calculus
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Prover Output

|- ((P) --> (Falsity)) --> ((P) --> (Falsity))
+ ImpR on (P) --> (Falsity) and (P) --> (Falsity)
(P) --> (Falsity) |- (P) --> (Falsity)
+ ImpR on P and Falsity
P, (P) --> (Falsity) |- Falsity
+ ImpL on P and Falsity

P |- P, Falsity

+ F1sR

P |-P

+ Axiom on P

Falsity, P |- Falsity

+ FlsL



Prover Idea |

A stream of rules tells us what to do

- Say we have the sequent -0 [ = 10 []
- The rule ImpR (10 []) (10 []) says we can prove it if
- we can prove the sequent 10 [| - 10 []

Thus we need to ensure that we always eventually reach the rule we need

- We need to reach Axiom 0 [] for the sequent 10 [] - 10 []
-  But Axiom 1 [] doesn’t harm us



Prover Idea |l

Consider the stream of numbers (pretend they are rules):

0123456789101112 ...

Every number appears somewhere in the sequence

So we will reach the number we need at some point!

But what if we need it twice? Or we need 12 before we need 5?



Prover Idea IlI

Consider the stream of numbers

001012012301234 ...

No matter how many times a number has already appeared, it keeps appearing

The stream is fair (but larger numbers are further away than before)

How to get a fair stream of rules?



My Theory Fair-Stream

definition upt lists :: <nat list stream> where
<upt lists = smap (upt 0) (stl nats)> [O] [O’ 1] [O’ 1’ 2] [O’ 1’ 2’ 3]
definition fair_nats :: <nat stream> where 0,0,1,0,1,2,0,1, 2, 3, ...
<fair nats = flat upt lists»>
definition fair :: <'a stream = bool> where
<fair s = Vx € sset s. Vm. dn > m. s 'l n = x>

A handful of lemmas later...

definition fair stream :: <(nat = 'a) = 'a stream> where
<fair stream f = smap f fair nats>

theorem fair stream: <surj f — fair (fair_stream f)>
unfolding fair stream def using fair surj

theorem UNIV stream: <surj f — sset (fair stream f) = UNIV>

unfolding fair stream def using all ex fair nats by (metis sset range stream

.set map surjI)



Encoding To and From the Natural Numbers

The Isabelle theory Nat-Bijection provides the following operations:

- prod_encode:: "nat x nat = nat"
- prod_decode :: "nat = nat x nat"
- sum_encode :: "nat + nat = nat"
- sum_decode :: "nat = nat + nat"
- list_encode ::"natlist = nat"
- list_decode :: "nat = nat list"

| write <c $ x = sum_encode (c x)



Encoding Terms as Natural Numbers

primrec nat of tm :: <tm = nat> where
<nat of tm (#n) = prod encode (n, 0)>
| <nat of tm (}f ts) = prod encode (f, Suc (list encode (map nat of tm ts)))>

function tm of nat :: <nat = tm> where
<tm of nat n = (case prod decode n of
(n, 0) = #n

| (f, Suc ts) = %f (map tm of nat (list decode ts)))>
by pat completeness auto
termination by (relation <measure id>) simp all

lemma tm nat: <tm of nat (nat of tm t) = t»
by (induct t) (simp all add: map idI)

lemma surj tm of nat: <surj tm of nat»
unfolding surj def using tm nat by metis



Encoding Formulas as Natural Numbers

primrec nat of fm :: <fm = nat> where

<nat_ of fm L = 0>
| <nat of fm (}P ts) = Suc (Inl $ prod encode (P, list encode (map nat of tm ts)))>
| <nat of fm (p — q) = Suc (Inr $ prod encode (Suc (nat of fm p), nat of fm q))>
| <nat _of fm (Vp) = Suc (Inr $ prod encode (0, nat of fm p))>

function fm of nat :: <nat = fm> where
<fm of nat 0 = L>»
| <fm of nat (Suc n) = (case sum decode n of
Inl n = let (P, ts) = prod decode n in }P (map tm of nat (list decode ts))
| Inr n = (case prod decode n of
(Suc p, q) = fm of nat p — fm _of nat q
| (0, p) = V(fm of nat p)))>
by pat completeness auto
termination by (relation <measure id>) simp all

lemma fm nat: <fm of nat (nat of fm p) = p>
using tm nat by (induct p) (simp all add: map idI)

lemma surj fm of nat: <surj fm of nat»>
unfolding surj def using fm nat by metis



Encoding Rules as Natural Numbers

definition idle nat ::
<idle nat = 4294967295>

primrec nat of rule ::

<nat of rule
<nat of rule
<nat _of rule
<nat of rule
<nat of rule
<nat _of rule
<nat of rule
<nat _of rule

nat where

<rule = nat> where

Idle = Inl $ prod encode (0, idle nat)>
(Axiom n ts) = Inl $ prod encode (Suc n, Suc (list encode (map nat of tm ts)))>

FlsL = In
FlsR In
(ImpL p g
(ImpR p q
(UniL t p
(UniR p)

1
1t

)
)
)

$ prod encode (0, 0)>

$ prod encode (0, Suc 0)>

= Inr $ prod encode (Inl $ nat of fm p, Inl $ nat of fm q)>
= Inr $ prod encode (Inr $ nat of fm p, nat of fm q)>»

= Inr $ prod encode (Inl $ nat of tm t, Inr $ nat of fm p)>»
Inl $ prod encode (Suc (nat of fm p), 0)>



lemma <map rule of nat [0..<100] =
[FlsL, ImpL L 1, FUsR, UniL (# 0) L1, UniR L, ImpR L L, ImpR (3§ 0 []) L
ImpL L (f © []), Axiom © [], ImpR L (3 O []1), UniR (3 O []),
ImpL ($ © [1) L, ImpR L (V 1), UniL (# 0) (3 © []), Axiom 0 [# 0],
ImpR L (V L), Axiom 1 [], UniL (1 © []) L, UniR (V L), ImpR (3 0 []) L
ImpR ($ 0 []1) (30 []), ImpL L (V L), Axiom 0 [# 0, # 0],
ImpR L (3 © [# 0]), Axiom 1 [# O], ImpL (3 0 []) (3 © []), Axiom 2 [],

ImpR (£ 0 []1) (3 0 []), UniR (f © [# 0]), ImpL (V 1) , IMpR (Y 1) L,
UniL (# 0) (V L), Axiom © [f © [1], ImpR L (V (3 0 [1)),

Axiom 1 [# O, # O], UniL (¥ 0 [1) (§ © []), Axiom 2 [# O],

ImpR ($ O []1) (V L), Axiom 3 [], UniL (# 1) L, UniR (V (3 0 [1]))

ImpR (V L) L, ImpR L (f O [# 0]), ImpL L (3 O [# 0]),

Axiom O [# 0, # 0, # 0], ImpR L (§f 1 []), Axiom 1 [ © []],

ImpL (£ 0 []) (V 1), Axiom 2 [# 0, # 0], ImpR ($ 0 [1) (f © [# 0]),
Axiom 3 [# 0], ImpL (V L) (§ @ []), Axiom 4 [], ImpR (V L) (§ © []),
UniR (¥ 1 [1), ImpL (3 © [# 0]) L, ImpR (3 O []) (V 1),

UniL (# 0) (3 0 [# 0]), Axiom © [t © [], # 0], ImpR L (L — 1),
Axiom 1 [# O, # 0, # 0], UniL (f 0 [1) (V L), Axiom 2 [{ @ []11,

ImpR (3 © [1) (V (£ © [1)), Axiom 3 [# @, # 0], UniL (# 1) (f 0 [1),
Axiom 4 [# O], ImpR (V L) (V 1), Axiom 5 [], Un1L (t o [# 0]) L,

UniR (L — 1), ImpR (§ O [# 0]) L, ImpR ( (Fofll),

ImpL L (VW ($ © [])), Axiom O [# 1], ImpR 1. 1 0 [# 0, # 0]),

Axiom , ImpL (¥ 0 []) (¥ O [# 0]), Axiom 2 [# O, # O, # O],

]
1), Axiom 3 [t 0 []1], ImpL (V 1) (V 1),



What Does It Matter? |

term <P — P>

term <30 [] — }0 []>

lemma <nat of fm (§0 []) = 1> by eval

lemma <nat of rule (ImpR (30 []) (0 [])) = 27> by eval
lemma <nat of rule (Axiom © []) = 8> by eval

term <(Vx. P x) — P a»

term <V(}0 [#0]) — 10 [f0 []1]>

lemma <nat of fm (30 [{0 []]) = 13> by eval

lemma <nat of rule (ImpR (V(}0 [#0])) (0 [0 []])) = 1865> by eval
lemma <nat of rule (UniL (0 []) (V(}0 [#0]))) = 997> by eval

lemma <nat of rule (Axiom 0 [0 []]) = 32> by eval

Recall what the sequence looks like: 0010120123 ...
We reach 1865 only at position 1865*(1+1865)/2 = 1740045.



What Does It Matter? I

The numbers in the formulas matter:

term <P — P — P>

term <}0 [] — }0 [] — $0 []>

lemma <nat of fm (§06 [] — %0 []) = 18> by eval
lemma <nat of rule (ImpR (30 []) (0 [] — %0 [1))

469> by eval

term <P — Q@ — P>

term <}0 [] — 1 [] — 0 []>

lemma <nat of fm (31 [] — %0 []) = 70> by eval
lemma <nat of rule (ImpR (30 []) (1 [] — %0 [1))

We reach 469 at position 110215
We reach 5409 at position 14631345

5409> by eval



Example Proofs |

time ./Main "Imp (Pre © []) (Pre © [])"

- (P) --> (P)
+ ImpR on P and P
P |-P

+ Axiom on P

Executed in 9.80 millis



Example Proofs

time ./Main "Imp (Uni (Pre @ [Var @])) (Pre @ [Fun @ []])"

- (forall P(0Q)) --> (P(a))
+ ImpR on forall P(@) and P(a)
- P(a)

forall P(Q)

+ UniL on @ and P(8)

P(@), forall P(@) |- P(a)

+ UniL on a and P(@)

P(a), P(@), forall P(@) |- P(a)

+ UniL on 1 and P(@)

P(1), P(a), P(@), forall P(®) |- P(a)

+ UniL on f(@) and P(@)

P(f(@)), P(1), P(a), P(0), forall P(@) |- P(a)

+ UniL on b and P(8)

P(b), P((0)), P(1), P(a), P(0), forall P(0) |- P(a)

+ UniL on 2 and P(@)

P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(@) |- P(a)
+ UniL on f(@, @) and P(@)

P(f(0, 0)), P(2), P(b), P(f(@)), P(1), P(a), P(0), forall P(e) |- P(a)
+ UniL on g(@) and P(@)

P(g(0)), P(f(0, ©)), P(2), P(b), P(f(0)), P(1), P(a), P(8), forall P(0) |- P(a)

+ Unil on ¢ and P(@)

P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(8)), P(1), P(a), P(0), forall P(8) |- P(a)

+ UnilL on 3 and P(0)

P(3), P(c), P(g(8)), P(f(8, @)), P(2), P(b), P(f()), P(1), P(a), P(8), forall P(e) |- P(a)

+ UniL on f(a) and P(@)

P(f(a)), P(3), P(c), P(g(8)), P(f(0, ©)), P(2), P(b), P(f(@)), P(1), P(a),
+ UniL on g(@, @) and P(@)

P(g(e, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, @)), P(2), P(b), P(f(0)),
+ UniL on h(@) and P(8)

P(h(e)), P(g(e, 0)), P(f(a)), P(3), P(c), P(g(@)), P(f(0, @), P(2), P(b),
+ UniL on d and P(@)

P(d), P(h(@)), P(g(e, ©)), P(f(a)), P(3), P(c), P(g(@)), P(f(e, 0)), P(2),
+ UniL on 4 and P(@)

P(4), P(d), P(h(@)), P(g(8, 8)), P(f(a)), P(3), P(c), P(g(@)), P(f(e, 0)),
+ UniL on f(@, @, @) and P(0)

P(f(e, @, ©)), P(4), P(d), P(h(@)), P(g(8, @), P(f(a)), P(3), P(c), P(g(@)), P(f(e, @), P(2), P(b), P(f(8)), P(1), P(a), P(e), forall P(8) |- P(a)

+ UniL on g(a) and P(®)

P(g(a)), P(f(e, 0, 0)), P(4), P(d), P(h(@)), P(g(0, @)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)),

+ UniL on h(e, @) and P(@)

P(@), forall P(@) |- P(a)

P(1), P(a), P(@), forall P(8) |- P(a)

P(f(@)), P(1), P(a), P(0), forall P(@) |- P(a)
P(b), P(f(8)), P(1), P(a), P(8), forall P(@) |- P(a)

P(2), P(b), P(f(8)), P(1), P(a), P(@), forall P(@) |- P(a)

P(2), P(b), P(f(8)), P(1), P(a), P(@), forall P(8) |- P(a)

We need to get to 1865 to hit the ImpR rule.
Then we start back at 0.

The UniL rule we need is at 997.

But then we keep running from 997 to 1866.
And hit lots of UniL rules in between...

In the end: a very silly derivation.

P(h(e, 0)), P(g(a)), P(f(e, @, @)), P(4), P(d), P(h(8)), P(g(@, @)), P(f(a)), P(3), P(c), P(g(@)), P(f(8, 0)),

P(2), P(b), P(f(0)), P(1), P(a), P(@), forall P(@) |- P(a)

+ Axiom on P(a)

beated in 3.1 SECS



Example Proofs Il

time ./Main "Imp (Pre © []) (Imp (Pre © []) (Pre © []))"
|- (P) --> ((P) --> (P))
+ ImpR on P and (P) --> (P) (position 110215)
P I- (P) --> (P)
+ ImpR on P and P
P, P|-P
+ Axiom on P

Executed in 192.72 millis



Example Proofs IV

time ./Main "Imp (Pre © []) (Imp (Pre 1 []) (Pre © []))"

|- (P) --> ((Q) --> (P))
+ ImpR on P and (Q) --> (P) (position 14631345)

P |- (Q --> (P)
+ ImpR on Q and P

Q)Pl_P
+ Axiom on P

Executed in 43.01 secs



Isabelle/HOL Details |

data;zge rule A datatype for our rules
e

| Axiom nat <tm list>
| FlsL

| FLsR

| ImpL fm fm

| ImpR fm fm

| UniL tm fm

| UniR fm

definition rules :: <rule stream> where A fair stream of rules
<rules = fair stream rule of nat»>

lemma UNIV rules: <sset rules = UNIV> which includes every rule
unfolding rules def using UNIV stream surj rule of nat .



Sequent Calculus Reprise
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Isabelle/HOL Details Il

function eff :: <rule = sequent = (sequent fset) option> where
<eff Idle (A, B) =
Some {| (A, B) |}
| <eff (Axiom n ts) (A, B) = (if n ts [€] A A ¥n ts [€] B then
Some {||} else None)>
| <eff FlsL (A, B) = (if L [€] A then
Some {||} else None)>
| <eff FLsR (A, B) = (if L [€] B then
Some {| (A, B [+] 1) |} else None)>
| <eff (ImpL p q) (A, B) = (if (p — q) [€] A then
Some {| (A[+] (p — q), p#8B), (q#A [+] (p — q), B) |} else None)>
| <eff (ImpR p q) (A, B) = (if (p — q) [€] B then
Some {| (p # A, q# B [+] (p — q)) |} else None)>
| <eff (UniL t p) (A, B) = (if Vp [€] A then
Some {| (p(t/0) # A, B) |} else None)>
| <eff (UniR p) (A, B) = (if Vp [€] B then
Some {| (A, p(#(fresh (A @ B))/0) # B [+~] Vp) |} else None)>
by pat completeness auto
termination by (relation <measure size>) standard



Isabelle/HOL Details IlI

Our rules don'’t step on each other (only r can disable r):

lemma per rules':
assumes <enabled r (A, B)> <— enabled r (A', B')>»
<eff r' (A, B) = Some ss'> <(A', B') |€| ss'>
shows «<r' = r»

If we give this lemma (+ UNIV _rules) to Blanchette et al., they give us a prover:
definition <prover = mkTree rules>

codatatype 'a tree = Node (root: 'a) (cont: "'a tree fset")

primcorec mkTree where
"root (mkTree rs s)
| "cont (mkTree rs s)

(s, (shd (trim rs s)))"
fimage (mkTree (stl (trim rs s))) (pickEff (shd (trim rs s)) s)"



Isabelle/HOL Details IV

Blanchette et al. also tell us the prover produces one of two things:

lemma epath prover:
fixes A B :: <fm list>
defines <t = prover (A, B)>»
shows <(fst (root t) = (A, B) A wf t A tfinite t) Vv
(dsteps. fst (shd steps) = (A, B) A epath steps A Saturated steps)> (is <?A V ?B>)

- Afinite, well formed proof tree
- Soundness: show that this guarantees validity of the formula

- a saturated escape path
- Completeness: show that this induces a counter model for the formula

Details omitted here (even though they are interesting!)
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